A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
Authors
Abstract:
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first linearize the equation using quasilinearization technique and the resulting problem is solved by a third degree B-spline function. Some numerical examples are included to demonstrate the feasibility and the efficiency of the proposed technique. The method is easy to implement and produces accurate results. The numerical results are also found to be in good agreement with the exact solutions.
similar resources
A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations
Article history: Received 15 December 2010 Received in revised form 21 April 2011 Accepted 24 April 2011 Available online 4 May 2011
full textRational Chebyshev Collocation Method for Solving Nonlinear Ordinary Differential Equations of Lane-emden Type
Lane-Emden equation is a nonlinear singular equation that plays an important role in the astrophysics. In this paper, we have applied the collocation method based on rational Chebyshev functions to solve Lane-Emden type equations. The method reduces solving the nonlinear ordinary differential equation to solving a system of nonlinear algebraic equations. The comparison of the results with the o...
full texta parametric iteration method for solving lane-emden type equations
in this paper, an analytical method called the parametric iteration method (pim) is presented for solving the second-order singular ivps of lane-emden type, and its local convergence is discussed. since it is often useful to have an approximate analytical solution to describe the lane-emden type equa- tions, especially for ones where the closed-form solutions do not exist at all, therefore, an ...
full textSPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
full textSolving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
full textUltraspherical Wavelets Method for Solving Lane-emden Type Equations
In this paper, a new shifted ultraspherical wavelets operational matrix of derivatives is introduced. The two wavelets operational matrices, namely Legendre and first kind Chebyshev operational matrices can be deduced as two special cases. Two numerical algorithms based on employing the shifted ultraspherical wavelets operational matrix of derivatives for solving linear and nonlinear differenti...
full textMy Resources
Journal title
volume 12 issue None
pages 15- 34
publication date 2017-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023